Hybrid Electric Vehicle – Down to the Parts

With all the great news from the auto industry introducing another hybrid vehicle or another electric vehicle, this article explores a bit what such vehicles are made of. What are the differences with the conventional petrol car and what might the future hold for them?

The first difference you see these days is that both the electric vehicle and the hybrid vehicle come with a plug to charge it at home; the conventional vehicle has not. The conventional vehicle also has no electric engine to power the wheels or a large battery to power this engine. The conventional car of course does have a battery, but that is just used for starting the internal combustion engine and it acts as a buffer for the electrical systems used. Power in the conventional vehicle is generated by the combustion engine.

For an electric vehicle, there are two main components: the electric motor and the battery. The electric motor is the one to power the wheels of the vehicle and the battery is used to bring along energy for the trip. They almost all have the option of regenerative braking, which allows one to recover energy when slowing down and charging the battery a little while doing so. This is a great method to increase the overall efficiency for a vehicle! Further more there is often a special battery management system (BMS) which ensures the battery is kept at the right temperature and is not charged or discharged in a way that can damage the battery.

For a hybrid vehicle there are a few more main components: besides the electric motor and the battery, there is also an onboard power source like the conventional combustion engine (but also a fuel cell is used for example). Additionally, there is a system that somehow connects the power from the battery and the for example combustion engine and gets it to the wheels. There are many ways to do this last step, the simplest being that the combustion engine would be used as a generator to power the electric motor with electricity. Excess electricity is stored in the battery for future use. Another method is to have a special gear set combine the mechanical power from the combustion engine and the electric engine and get them to the wheels. There are also manufacturers who power one set of wheels with the combustion engine and the other set of wheels with the electric engine. A big advantage of the hybrid vehicle is that it can use the very efficient electric engine at lower speeds (for example urban areas) and the combustion engine for extra power on the highways or for extra range.

To sum it up, an electric vehicle consists of:

– Electric Engine
– Battery

A hybrid vehicle consists of:

– Electric Engine
– Battery
– Energy source (internal combustion engine, fuel cell, etc)

The disadvantages of the electric vehicle and the hybrid are mostly the cost. Compared to the conventional car they can cost more to purchase. This has two main reasons; the first being that the conventional car is mass-manufactured which makes it cheaper (compare one million units produces versus one thousand units produced) and the second is the current price of batteries. Batteries at the moment are the biggest cost within the vehicle, the larger your battery is, the larger the cost is in the total price of the vehicle.

Another disadvantage which currently mostly applies to the electric vehicle, is the range it can cover. Current vehicles are of such a weight and their batteries can only hold a certain amount of power. Comparing the electric vehicle to a conventional petrol car they can cover a lot less ground on a full charge or tank. The first argument to counter this disadvantage is that most people do not drive distances that can not be covered by an electric vehicle. Current electric vehicles can cover about double or four times the daily distance required by many people! However, there are three movements currently helping to overcome the range anxiety problem. The first is the battery manufacturer, which improves the technology so that the battery will weigh less and can contain more power. The second is the charging industry, where solutions are found in fast charging. Conventional charging can take up to eight hours to charge your vehicle. The goal is to reduce this to an acceptable amount of mere minutes. The third force is heading for battery swapping; much like a petrol station, an electric vehicle can swap the empty battery for a fully charged one.

For the future of the electric vehicle and the hybrid there are many options, the most popular ones are:

– Fuel Cells
– Fast Charging of batteries
– Better batteries that weigh less and hold more power
– Battery swapping stations
– New car design options

Lots to expect from the electric vehicle and the hybrid vehicle!

Vehicle to Grid – How Electric Vehicles Interact With a Smart Power Electricity Network

What is Vehicle to Grid
Also called Vehicle 2 Grid or V2G, Vehicle to Grid is the process of connecting your electric car into the transmission electricity network. If you have an electric vehicle then you will definitely want to consider setting up V2G through a simple metering system and contract with your local electricity supplier.

What do I need to consider before deciding to connect my vehicle to the grid?

  • Firstly you have to have an electric car which can be charged by a standard electricity outlet.
  • The second thing you will want to do is determine some basic driving habits – i.e. if you drive almost your entire vehicle range to work and back every day, then there is unlikely to be much energy left over to swap between your battery and the grid, which makes setting up V2G a little redundant
  • Having decided that V2G connectivity is possible and feasible, you will need to look at the right products on the market to help you achieve this. I.e. which inverter should be used and which electricity trading contract will suit your needs the best?
  • If you decide suddenly that V2G is not good for you, how can you get out of an otherwise more expensive contract?

Once these basic items have been checked off the list, it is time to call up your utility and start the process of applying for V2G. You can then purchase a suitable inverter which allows you to feed back into the grid (this will be similar if not identical to the type of inverters used on solar PV grid connected power supplies). Of course you will have to decide what sized inverter to go for.

For example, a 5kW inverter may cost $1000 and a 2kW inverter may cost $600. Therefore you have to be sure that you can recover the $400 over being able to sell a higher rate of electricity in peak times. Some simple maths will help you work out the optimal solution, but just be aware of the various pay offs for each option.

Why is Vehicle to Grid (V2G) Good?
Vehicle to Grid applications have a number of benefits for all sorts of businesses and stakeholders. Vehicle to Grid (V2G):

  • Empowers the home consumer to make sensible choices about when they use their electricity through smart metering
  • saves the consumer money in the long run through effective electricity management
  • is green! Every time you supply the grid with electricity during the yearly peak energy demand, you are reducing the need to upgrade the electricity network with more transmission lines and generators
  • You are helping to bring electric vehicles (EV’s) onto the market
  • You are reducing your carbon footprint! This is a big ones these days
  • The electricity company can save money and reduce their unit electricity prices, or reduce the need to increase them
  • reduce the amount of electricity transmission line needed. I.e. the car transports the electricity to where it is needed.
  • Cuts down on the amount of fuel stations required
  • Reduces our addiction to foreign oil through the accelerated introduction of electric vehicles and ability to replace fossil fuel generation with renewable energy generation.
  • Allows more sustainable energy and renewable energy to be introduced onto the electricity grid, as electric vehicle batteries can now act as a buffer to intermittent generation.

The last point is an important one. Traditional transmission networks are struggling to cope with large percentages of intermittent renewable and sustainable energy generation, as electricity generation from these sources is largely dependent on the elements. Therefore to have the ability to store electricity somewhere is important. In many countries power utilities are approaching this by pumping water up a hill and regenerating during peak times (~60% efficiency) or storing hydrogen formed by electrolysis underground ready for re generation (~40% efficiency). Storing electricity in batteries is a much higher efficiency (60% – 90%) however is a little costly.

Japan uses large battery sheds to store small amounts of energy, however vehicle to grid systems also work very well as storage mechanisms and are likely to play this role in the future as more electric vehicles hit the market. How soon we will see such networks will largely rely on the countries commitment to renewable and sustainable energy sources, as well as the abundance of wind, sun and wave energy. Although many companies claim to have a green lining, short term economics of such projects still remains the number one driver for the introduction of such technology.

The advantage to the end consumer who is running a vehicle to grid system is the savings in electricity for essentially hiring out the storage space in their electric car battery. So as we can see, it is a win win for many as it not only reduces the stress on our electricity transmission and generation networks, allows more sustainable energy to be placed on the system with lower carbon emissions, but also saves the end user money whilst making electric vehicles more affordable. It also weans us off our foreign oil addiction through the cost effective introduction of electric vehicles, a topical issue as we approach peak oil status around the world.

For more information you may want to consult your electricity network to find out about their smart metering tariffs. You will also want to look into the purchase of an electric vehicle, or an electric vehicle conversion in able to make use of the vehicle-2-grid (V2G) technology. I guess we can all look forward to a cleaner, greener, cheaper carbon restrained future, and V2G is going to help us get there in a big way!

Eliminate Chronic Car Problems With Electric Vehicle Conversions

Regardless of where you travel to in Australia, you will always be putting miles on your car. Unfortunately, the parts used in high performance engines found in modern cars wear out much faster than the ones used years ago. For example, the fuel pump in modern cars often dies out after 60,000 to 90,000 Km of travel. If you check your warranty information, you will most likely find that the fuel pump is not covered after 60,000 Km, even on an extended warranty plan. If your odometer reading is approaching this number, electric vehicle conversions may represent a cost effective way to get out of chronic expenses associated with a high mileage vehicle.

Critical Car Parts and High Compression Engine Wear

Not so long ago, fuel pumps were one of the easiest things on a car to replace. All you really needed to do was search around near the carburetor, take the old pump out, and then put the new one in. Typically, it was a job you could accomplish in under an hour, right in your own back yard. At the same time, fuel pumps tended to cost well under 100.00.

By contrast, today’s vehicles use fuel injectors that require a very high compression ratio from the fuel pump. This type of pump is almost always housed in the fuel tank. They also cost several hundred dollars per unit. In order to replace the pump, you will need to take out the fuel tank, and then hope the mechanic will not damage the neck of the tank while removing the old pump. Because it tends to be a difficult job, you may wind up paying well over $1500.00 to have a new pump installed. On top of that, if they do damage the gas tank, you may wind up spending an additional $1000.00 to solve that problem.

Once the fuel pump is replaced, it can significantly alter the electrical system of the vehicle. For example, a number of cars and trucks develop computer problems, as well as a tendency to die out randomly once the new fuel pump is installed. Electric cars are virtually maintenance free. Electric vehicle conversions are worth exploring, and much safer in this type of situation. At the very least, you won’t have to worry about the motor dieing at an inconvenient time.

While you may not be aware of it, compression gaskets, valves, fuel injectors, and engine heads wear out faster when exposed to higher combustion temperatures and compression ratios. No matter how well you maintain and service your vehicle, it will not change this aspect of modern engine performance. Once your car passes the 100,000 Km mark, the best of the engine and transmission lifespan will be used up. Perhaps this is one of the reasons why very few manufacturers will guarantee a vehicle engine and transmission past 100,000 Km. Under these conditions, electric vehicle conversions offer a viable, safer, and cheaper alternative to help you maintain reliable transportation.

Deep Engine Computer Problems and Internal Combustion Engines

Even though the computer modules in your car are often housed in easy to reach places, they obtain data from sensors deep within the engine. For example, oxygen sensors may be positioned within the cylinder head. There are also some sensors that may be housed deep in the engine block. In some cases, these sensors monitor the flow of oil and coolants through the block. Once these sensors malfunction, they can cause piston heads to seize up, as well as ruin other critical parts of the main engine. At the same time, replacing these sensors may cost several thousand dollars if the engine has to be taken out, or the warranty on the electrical system is up.

Therefore, when the fuel pump causes changes in the electrical system, it can have hidden consequences. As with other electrical devices, when a new component is added, it can disrupt the pattern, and lead to serious consequences. When you make use of electric vehicle conversions, you will not need to worry about disrupting the electrical harness or the engine sensors. In fact, you will no longer need to worry about an engine block at all. Instead, your vehicle will run on a nice, quiet electrical motor that requires very little in the way of maintenance.

The Best Cars for Electric Fuel Conversions

If you buy a used car, you will always worry about repairs if you do not take steps to change the engine, transmission, and fuel pump. That said, if another used car is in better shape than the one you have now, you can always see about getting an electric car conversion in the near future. At the very least, you can have peace of mind knowing that you will get many years of trouble free driving out of it.

People that own cars today do not realize they could have a financial time bomb sitting on their hands. Regardless of whether the fuel pump dies in the middle of traffic, or the engine gaskets blows, it will cost you to have the vehicle repaired. When you are under pressure to get your car back as quickly as possible, you will most likely go on paying bigger repair bills, rather than evaluate the expanded benefits associated with electric vehicle conversions. Take the time now to evaluate your financial commitment to owning a petrol car. Switching to all electric is easier than you realize.

Today, electric vehicle conversions are available right here in Australia. You can easily extend the life of your current vehicle, and help do your part in providing for a cleaner more sustainable future, especially in your part of the world. When it comes right down to it, if you own a car or two, the best thing you can do is look into electric vehicle conversions today.